
 1

Steganography Using Error Correction Methods
 ا���	ء �	����ام ��ا�
 اآ�
	ف ا����

��. د�� ���-,+ *()م ا�'	�&	ت/ $	#"� �	�!/ و�	م �

-,+ *()م ا�'	�&	ت/ $	#"� �	�!/ �	دي *&�/#.�	ء

1. Abstract
 In this research, we benefit from error correction methods to hide some information. By
hiding some bits in sent data, i.e. making benefit error, and then using error detection
methods to get hidden bits and return original data. Here, we use Hamming code error
detection method to apply this idea.

 على البيانات المرسلةافةالبيانات المضان . المعلوماتلإخفاءطرائق تصحيح الخطأ هذا البحث، استفدنا من في

 نحصل على هذه البيانات أنطرائق اكتشاف الخطأ نستطيع ، وباستخدام على البيانات المرسلة مفيدة أخطاء أصبحت

 . لاكتشاف الخطأ في تطبيق الفكرةHamming Codeطريقة استخدمنا .الأصليةالمخفية واسترجاع البيانات

2. Introduction
 Networks must be able to transfer data from one device to another with complete
accuracy. A system that cannot guarantee that the data received by one device are identical
to the data transmitted by another device is essentially useless. Reliable systems must be
have a mechanism for detecting and correcting the errors and this is done by using error
detection and correction methods (Welch J. C., 2000).
 Steganography and cryptography are cousins in the spy craft family. Cryptography
scrambles a message so it can not be understood. Steganography hides the message so it can
not be seen (Anderson R. J. and Petitcolas F. A., 1998).
 In this research, we combine one of error correction techniques (that is hamming code)
with pure steganography in the process of sending a data between two computers over a
network.

3. Steganography

 Information hiding is the art of hiding message inside other message. In other words,
Information hiding is studies the ways that make communication invisible by hiding
secret in innocuous message. This part of information hiding called steganography.
Steganographic methods usually hide messages in other, harmless looking data in such
that third person can not detect or even prove this processes (Katzenbeisser S.&
Petitcolas F., 2000).
 There are three main types of steganography which are:

• Pure Steganography
 We call a steganographic system which does not require the prior exchange of
some secret information (like a stego-key) pure steganography (Kahn, D. 1996).

 2

• Secret Key Steganography
 A secret key steganography system is similar to a symmetric cipher: the sender
chooses cover C and embeds the secret message into C using a secret key K. if the
key used in the embedding process is known to the receiver, he can reverse the
process and extract the secret message. Anyone who does not known the secret key
should not be able to obtain evidence of the encoded information (Trivedi S. and
Chandramouli R., 2005).

• Public Key Steganography
 Public key steganography system require the use of two keys, one is private
and the other one is public key; the public key is stored in a public database whereas
the public key is used in the embedding process, the secret key is used to reconstruct
the secret message (Backes M. and Cachin C., 2005).

From the types of steganography above, our research is pure steganography.

4. Error Correction

 Error correction can be handled in two ways. In one, when an error is discovered, the
receiver can have the sender retransmit the entire data unit. In the other, a receiver can
use an error correcting code, which automatically corrects certain errors. In theory, it is
possible to correct any binary code errors automatically. Error correcting codes however
are more sophisticated than error detection codes and require more redundancy bits. The
number of bits required correcting a multiple-bit or burst error is so high that in most
cases it is inefficient to do so. For this reason, most error correction is limited to one-,
two-, or three-bit errors. The error correction method that is used in this research is
single bit error correction.
 To correct the error, the receiver simply reverses the value of the altered bit. To do
so, however, it must know which bit is in error. The secret of error correction, therefore,
is to locate the invalid bit or bits and this is done by using redundancy bits. To calculate
the number of redundancy bits (R) required to correcting a given number of data bits
(M), there is a relationship between (M) and (R) that is (Forouzan B., 1998) :

12 ++≥ RMR

4.1 Positioning the Redundancy Bits
 The Hamming code (Hamming R., 1950) can be applied to data units of any length
and uses the relationship between data and redundancy bits shown above. For example,
a seven-bit ASCII code requires four redundancy bits that can be added to the end of the
data unit or interspersed with the original data bits. In figure (1), these bits are placed in
positions 1, 2, 4, and 8 (the positions in an 11-bit sequence that are powers of 2). For
clarity in the examples below, we refer to these bits as r1, r2, r4, and r8.

11 10 9 8 7 6 5 4 3 2 1
d d d r8 d d d r4 d r2 r1

Redundancy Bits

Figure (1), Locations of Redundancy Bits

 3

 The XORing combinations used to calculate each of the four r values for a seven-bit
data sequence are as follows (Forouzan B., 1998) :

r1 bits: 1, 3, 5, 7, 9, 11

r2 bits: 2, 3, 6, 7, 10, 11

r4 bits: 4, 5, 6, 7

r8 bits: 8, 9, 10, 11

 This is according to Hamming code method (even parties), for more information see

(Forouzan B., 1998) .

4.2 Calculating the r Values
 Figure (2) shows a Hamming code implementation for an ASCII character. In the
first step, we fill in each bit of the original character in its appropriate position in the 11-
bit unit. In the subsequent steps, we calculate even parities for the various bit
combinations. The parity value for each combination is the value of the corresponding r
bit. For example, the value of r1 is calculated to provide even parity for a combination
of bits 3, 5, 7, 9, and 11. The value of r2 is calculated to provide even parity with bits 3,
6, 7, 10, and 11. The final 11-bit code is sent through the transmission line (Forouzan
B., 1998) .

Data 1 0 0 1 1 0 1
 11 10 9 8 7 6 5 4 3 2 1

Adding r1 1 0 0 1 1 0 1 1
 11 10 9 8 7 6 5 4 3 2 1

Adding r2 1 0 0 1 1 0 1 0 1
 11 10 9 8 7 6 5 4 3 2 1

Adding r4 1 0 0 1 1 0 0 1 0 1
 11 10 9 8 7 6 5 4 3 2 1

Adding r8 1 0 0 1 1 1 0 0 1 0 1
 11 10 9 8 7 6 5 4 3 2 1

Code: 1 0 0 1 1 1 0 0 1 0 1

Figure (2),Original Data with Redundancy Bits

XOR

XOR

XOR

XOR

 4

4.3 Error Detection and Correction
 Now imagine that by the time the above transmission is received, the 7th bit has
been changed from 1 to 0 (see figure 3).

 The receiver takes the transmission and recalculates four new values using the same
sets of bits used by the sender plus the relevant parity (r) bit for each set (see figure 4).
Then it assembles the new parity values into a binary number in order of (r) position (r8,
r4, r2, r1). In our example, this step gives us the binary number 0 1 1 1 (7 in decimal),
which is the precise location of the bit in error. Once the bit is identified, the receiver
can reverse its value and correct the error(Forouzan B., 1998) .

11 10 9 8 7 6 5 4 3 2 1
1 0 0 1 1 1 0 0 1 0 1

11 10 9 8 7 6 5 4 3 2 1
1 0 0 1 1 1 0 0 1 0 1

11 10 9 8 7 6 5 4 3 2 1
1 0 0 1 1 1 0 0 1 0 1

11 10 9 8 7 6 5 4 3 2 1
1 0 0 1 1 1 0 0 1 0 1

1 1 1 0

Figure (4), Finding Position of Error

Sent Received
 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1

Error

Figure (3), Received Data With Error

Channel

XOR

XOR

XOR

XOR

 5

5. Proposed Method
 The classical hiding system hide image in audio or text in image or some combination
from them. The aim from our research is to hide information (text or image) in the
transmitted data between two computers over network. When data transmit, it must
segmented to blocks (each block is 7-bit) and the error correction information is computed
for each block. So each block become 11-bit (after adding redundancy bits) after that each
block sent to the receiver. The receiver check if an error happens in the received data and
removes the redundancy bits. But what happens when we intend an error in the senting
data? The error we mean is the hidden data, so the receiver when find the error, he retains a
copy from error and correct it. The collection of errors is the hidden message. figure (5)
shows the proposed method. The hidden bit location is selected randomly.

Example:
 Assume the block of data is (1 0 0 1 1 0 0) and we want to hide bit value (1). We
Firstly compute error correction information as in the section 4.2:

 After computing error correction information, the 7-bits become 11-bits (data with
redundancy). Now we want to hide the bit value (1), so we select a location randomly
with one condition that is the value of selected location must be the reverse of the bit
value to be hiding. The location (5) is suitable so we change the value of it to (1) as in
figure (6).

 The receiver then check the received data by computing the correction
information again as previously stated in figure (4). The resulting value is (0 1 0 1)
which means (5) in decimal, so the error in location (5) that is the hidden bit. The
receiver gets the value of fifth bit as the transmitted hidden bit and reverses the fifth bit
value from (1) to (0), in order to return the original message.

11 10 9 8 7 6 5 4 3 2 1
1 0 0 1 1 1 0 0 0 1 0

Compute
Error

Correction
Information

7-bits to be
 transmitted

11-bits (data
plus

redundancy) Hiding
System

Pure Message

11-bits
containing

intended error
Extract the
bit from

error

Error
correction

system

7-bits received

Received Hidden Message

Sender Receiver

Figure (5), The Proposed Hiding System

Send Received

0 1 0 0 1 1 1 1 0 0 1

Error

Figure (6), Hide a bit 1 in the 5th Location of Sent Data

0 1 0 0 0 1 1 1 0 0 1

 6

6. Discussion
It can be noted the following points from the suggested method:

1. The proposed method used intended error to hide the data without any
influence on it.

2. There is no need to specify the location of hidden bit because the receiver can
detect it, thus it is hard to detect.

3. The value of hidden bit must be the opposite to the original data bit (i.e. we
must hide bit 0 in bit 1, or vise versa, to ensure make error in the original
data).

4. Extra errors may also produce accepted results to steganography.
5. We can use the proposed method with three error detection technique, for

example, changing one as hidden bit and leave others for additional noise
errors.

7. References

Anderson R. J. and Petitcolas F. A., (May 1998) “On the limits of steganography”,
IEEE Journal on Selected Areas in Communications, vol. 16.

Backes M. and Cachin C., (2005) “Public-key steganography with active attacks”, in
Proc. 2nd Theory of Cryptography Conference (TCC 2005) (J. Kilian, ed.), vol. 3378 of
Lecture Notes in Computer Science, pp. 210–226, Springer.

Forouzan B., (1998) “Introduction to Data Communications and Networking”,
McGraw-Hill Companies.

Hamming R. W., (1950), "Error Detecting and Error Correcting Codes" , Bell
System Technical Journal, vol. 29, pp. 147-160.

Kahn, D. (1996) "Codebreakers: The Story of Secret Writing", Revised ed.,
Scribner, New York.

Katzenbeisser S. and Petitcolas F., (2000) "Information Hiding Techniques for
Steganography and Digital Watermarking", Artech House Inc.

Trivedi S. and Chandramouli R., (Feb. 2005) "Secret key estimation in sequential
steganography", Supplement on Secure Media, IEEE Trans. on Signal Processing.

Welch J. C., (2000) "The Technical Introduction To Networks" , The Journal of
Macintosh Technology, Volume Number: 16, Issue Number: 4.

